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Bilinearization of the non-local Boussinesq equation 
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Dienst Theorelische Natuurkunde, Vnje Unirersiteit Brussel, Pleinlaan 2, 8-1050 Brussels, 
Belgium 

Received 13 April 1995. in final fonn 3 July 1995 

Abstract. Asingle-field bilinear system generating lhe so-called non-local Boussinesq equation 
is consmcted. From lhe bilineariLalion procedure it wn be seen thar the associated hiemchy 
of solilon systems which we consxuct shares p m  of the solution set of a hierarchy related to 
the Kadomtsev-Petviashvili equalion. A bilinear representation of the recuion  operator for 
the Kaup hierarchy is essential in the construction and a systemic way of obtaining such a 
representation from just hvo-soliton consideations is presented. 

1. Introduction 

Two well known and powerful tools in soliton theory are the Hirota bilinear operators and 
the bilinear forms expressed in terms of such operators (Hirota 1980). In the past two 
decades they have proved to be extremely useful, not only for constructing solutions for a 
vast set of soliton systems, but also in the investigation of several aspects of integrability 
which appear in these systems (Hirota 1974, Hietarinta 1987). Another appealing feature of 
the bilinear operators is that they appear in a natural way in Sato theory (Ohta et al 1988). 
such that bilinear formulations exist for a large variety of integrable equations (Jimbo and 
Miwa 1983) in 2 + 1 dimensions or in (1 + 1)-dimensional reductions thereof. Hence the 
quite popular belief (or should one call it a conjecture?) that ‘all’ soliton systems can be 
‘bilinearized in one way or another’. In the light of this proposition, it is interesting to 
investigate the ‘bilinearizability’ of newly discovered soliton systems, especially when, at 
first sight, such systems appear not to be bilinearizable in any straightforward manner. 

Recently, a so-called non-local Boussinesq (NLBq) equation was presented (Lambert et 
al 1994) as a resonance-free alternative to the good Boussinesq equation. The behaviour of 
the relevant two-soliton solutions, as compared to those of the good Boussinesq equation, 
is discussed in detail in Lambert eK al (1994). This N L Q  equation is a sech-squared 
soliton system related through a Backlund transformation to Kaup’s higher-order water 
wave equation. Because of the sech-squared nature of the solitons, one expects to find a 
bilinear form for this equation expressed in a single field, in contrast to the two-field bilinear 
form which is known for Kaup’s equation (bearing in mind KdV-MKdV). In this paper, we 
will show how one can obtain a bilinear system for this equation, expressed in a single 
field but using a multidimensional approach. In fact, the system arises naturally when one 
tries to bilinearize higher-order flows belonging to the hierarchy associated with the NLBq 
system. 

No recursion operator is readily available for this hierarchy, so the first step in our 
procedure must be the characterization of its higher-order flows. This characterization 
can be obtained by exploiting the Backlund transformation which exists between Kaup’s 
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equation and the NLBq system, such as that which maps higher-order Kaup equations to 
higher-order NLBq equations. Since this Bkklund-link is best described at the bilinear 
level, a bilinear description of the Kaup hierarchy is needed. 

Starting from the (available) bilinear form of the Kaup equation, it is possible to 
construct a so-called canonical bilinear form (willox et al 1993) for the entire hierarchy 
associated with this equation, such that it  (when expressed in the proper fields) reduces to 
the action of the recursion operator for the classical Boussinesq (CBq) or Broer-Kaup (BK) 
systems (which are known to generate the Kaup equation upon elimination of the proper 
variable). This canonical bilinear form first appears in the work of Liu and collaborators 
(Liu et ai 1990) as a bilinearization of the recursion operator for the CBq equation, but 
no explicit construction was given. In this paper we propose such a construction, using 
nothing more than the explicit form of the solitary waves and the two-soliton solutions of 
Kaup’s equation. The canonical bilinear form then gives rise to a canonical linear system, 
the compatibility condition of which will define the higher-order flows of a NLBq hierarchy. 

Finally. bilinearization of the first few members of this hierarchy reveals a strong 
connection with the Kadomtsev-Petviashvili hierarchy: the solutions to the NLBq systems 
are part of the solution set of a bilinear hierarchy related to the KP hierarchy (for a specific 
value of the parameter appearing in the definition of the NLBq system, this hierarchy reduces 
to the KP hierarchy). The bilinear form for the NLBq system itself is found to consist of a 
pair of bilinear equations, expressed in one dependent but three independent variables. 

A straightforward consequence of this bilinear system is the existence of symmetric 
Wronskian solutions previously found using a trilinear form for Kaup’s equation 
(Matsukidaira et al 1990, Satsuma et al 1992). 

2. The non-local Boussinesq system 

The non-local Boussinesq system (Lambert et al 1994) 
U, = v, 

(where a subscript nx, mt stands for the derivative a(n im) /axntm)  was introduced through 
a direct bilinearization scheme for Kaup’s higher-order water wave equation (Kaup 1975) 

(2) 
In Lambert et al (1994) it  was shown this equation can be put into bilinear form by setting 
w = -2i In FjG:  

W2l - f f w 2  + Wqx + ;(w:Ir + (w,w, + ;w:,. = 0. 

This system can also be looked upon as the bilinear representation of the classical Boussinesq 
(CBq) equation (Hirota and Satsuma 1977, Hirota 1985). 

The Hirota D-operators used in (3) are defined in the usual manner (Hirota 1980): 

D , P D ~  F . G = [(a, - aroyaL - a X . ) P y X ,  I ) G ( ~ ’ ,  t ’ ) ]  (4) 
r’+f 

Setting VI = F / G  and q = 21nG. the bilinear system (3) linearizes in the following way: 
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The NLBq system (1) is found as the compatibility condition of this linear system expressed 
in terms of the variables U = 4% and V = qx,. It derives its name from the fact that when 
the V-variable is completely eliminated from the system, the resulting equation in U would 
be explicitly non-local. 

Due to the parity property of the D-operators which follows from the definition (4): 

D,”@ F . G = (-)‘P+*’D,PD7 G . F 
and using the invariance of ( I )  under t + -t and V --t -V, it is easily deduced that 
the bilinear system (3) for Kaup’s equation can be interpreted as a (bilinear) Backlund 
transformation for the NLBq system, i.e. if F and G satisfy (3) then both q = 21nG and 
@ = 21n F give rise to solutions (U, V) and (fi, V) of the N L B ~  system. 

Since the linearizing transformation mentioned above depends only on the combinatorial 
properties of the Hirota D-operators (and is therefore always possible), a simple scheme to 
produce higher-order flows for the N L B ~  system becomes available. First one has to find 
a bilinear expression for the Kaup hierarchy. Linearization of this bilinear expression will 
then give us an infinite-dimensional linear system, the compatibility condition of which will 
define the non-local Boussinesq hierarchy. 

3. A canonical bilinear form for the Kaup hierarchy 

One possible way to construct a bilinear representation for the Kaup hierarchy would be by 
‘bilinearizing’ the m o w n )  recursion operator for Kaup’s equation. Such a bilinear system 
was first proposed by Liu and collaborators (Liu et QI 1990), unfortunately without any 
clear indication of the method they used to obtain it. 

As a direct bilinearization of this operator turns out not to be a sh-aightforward matter at 
all, for completeness we shall briefly present an alternative but systematic construction of a 
bilinear representation of the Kaup hierarchy. The appealing feature of our method is that 
it only relies on the explicit form of the one- and two-soliton solutions of Kaup’s equation, 

Let us for simplicity consider the case where (Y = 0. The bilinear form (3) for Kaup’s 
equation then becomes 

where we denote the Kaup time evolution by tz. 
The first step in our procedure will be to construct the first higher-order flow in the 

hierarchy (its ’time evolution’ will be denoted by the variable f 3 ) .  The corresponding 
bilinear system will be completely characterized by the one- and two-soliton solutions it is 
required to share with (6): 

(7) 
F = l  
G = I + e x p O  O = k x - i k Z t i - k 3 t s + r  

F = I + exp 6 + KI exp(el -t 0,) 
G = 1 +exp& + K2exp(Q1 + Sz) 

where 
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fixing the I 3  dispersion relation to be d3) = -k3. 
Let us now suppose there exists a single bilinear system describing all time evolutions 

of the hierarchy associated with (2). If we assume the bilinear system (6) to be the t2 
realization of this 'canonical' system, the bilinear equations composing the system for the 
t3 case can only consist of a few combinations of D-operators: a first bilinear equation 
(of weight 3, where the weights of x ,  tm are taken to be 1 and m, respectively) can only 
consist of Dl3, D,Dt, and 0: terms, whereas its weight-4 partner in the system can only 
contain DxDt,, D;D,,. 02 and 0," terms. Furthermore, if the canonical bilinear system has 
to be a proper 'bilinearization' of the action of the recursion operator (i.e. of an operator 
linking two successive flows in the hierarchy), i t  can easily be seen that contributions of 
D-operators with an increasing polynomial degree (with increasing order of the flow) are 
inadmissible. In the present case this restriction rules out the appearance of D: and 0," 
terms in the weight-3 and weight-4 bilinear equations, respectively. 

Under the above assumptions, we find the following one parameter family of bilinear 
systems exhibiting the solitary wave solutions (7) of the Kaup equation: 

(DxD12 + iD,,) F . G = 0 
(9) + (1 - p)DXDr, - iD:D,) F G = 0. 

Now imposing the existence of Kaup-type two-soliton solutions (8), the value of the 
parameter is restricted to j3 = -1, giving rise to the following bilinear system for the 
evolution of t3: 

(iDt, + D,D,,) F G = 0 
(2iD,D,, - iDi + D:Dt2) F G = 0. (10) 

A canonical bilinear system valid for all time evolutions is now immediately determined by 
the same line of reasoning as the one which lead to (IO). It has to consist of two bilinear 
equations: a first (say weight m) bilinear equation only depending on D, and OXOtm-, 
contributions, complemented by a weight m+ 1 equation consisting of D,D,-, D:Dlm-L and 
DhDtm-, terms. Moreover, if the systems (6) and (10) have to be the tz and tl realizations 
of such a canonical system and if (3) has to be its 01 # 0 reduction, then the only possible 
canonical bilinear system for the Kaup hierarchy is the following ( f l  = x ) :  

(11) 
(io,, + DxDtm-,)  F . G = 0 
(Z iD ,D, - - iD ,D, - ,+D:D, - , -orD,~- , )  F . G = O  V m 2 2 .  

One can easily verify that (1  1)  admits suitable (multiple-time) generalizations of the 
solutions given in (7) and (8) for the case 01 = 0, whereas in the case 01 # 0 it can be 
checked to exhibit the following one-soliton solution: 

F = 1 + C e x p 0  
G = 1 + e x p 0  (12) 

with 
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where the Oj,  Cj and a$’”) are defined as above by adding the index j (1 or 2) whenever 
appropriate, and where the two-soliton coupling constant AI* is defined as 

k i + k : - z (  2 k2kZ 1 2 +  0(2) 1 0 2 )  (2) 

Ai2 = 
(ki + kz)’ 

The bilinear system (1 1) is indeed a canonical bilinear form for the Kaup hierarchy since it 
generates the hierarchy in the same way as its recursion operator does. Introducing the two 
dependent variables w = 8, In FIG and t = a,” In FG, the canonical bilinear system ( I  1) 
reduces, after elimination of the t2-dependence using the m = 2 case, to the action of the 
recursion operator for the so-called classical Boussinesq (CBq) hierarchy @to 1984): 

which is of course known to be a reformulation of the recursion operator for the Kaup 
hierarchy. Although we only imposed the existence of one- and two-soliton solutions upon 
the system ( l l ) ,  since its action corresponds to the hereditary recursion operator (14), it  is 
clear that it also allows N-soliton solutions for all values of N. As mentioned before, the 
system (1 I )  taken at LY = 0 can be found in a paper by Liu and collaborators (Liu et a1 
1990) but no justification for its actual form was given there, other than the reduction to 
the recursion operator. 

4. The non-local Boussinesq hierarchy 

As was sketched at the end of section 2, the next step in our procedure is the linearization 
of the canonical bilinear system (1 1). Setting Y = F/G and q = 21n G in (1 I), we obtain 
the following infinite-dimensional linear system: 

The compatibility condition of this linear system can be expressed in terms of the variables 
U = q h  and V = qrt2 so as to give 

where the operator =(U. V )  is found to be 

U, 
1 - + vxa;i- v? + U,” V 2u - f f  2u-ff 

3v V U ,  V )  = a - a,’ - 2u + - 3ux a, + - 
2u-f f  2u- f f  

- 2vXa;’ I -4 (2U - 0 0 2  (2U -cup 

We will refer to the sequence of evolution equations defined in (16) through the action of 
the operator R(U. V ) ,  as the non-local Boussinesq hierarchy. In a forthcoming paper it will 
be shown that the operator R(U,  V )  is a hereditary recursion operator for the NLBq system 
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and, hence, that the sequence (16) produced by starting from the x-translational symmetry 
( ( Ix,  V,) is a hierarchy of commuting flows. 

At m = 2, the sequence (16) reduces to the NLBq system itself. The first higher-order 
member of the NLBq hierarchy calculated from (16) and (17) has the following form: 

Note that, although the NLBq system ( I )  can  be found as the compatibility condition of 
the linear system (5). the corresponding bilinear form (3) does not constitute an applicable 
Backlund transformation at the soliton level: due to the absence of a free parameter the 
N-soliton solution is not mapped into the (N+ 1)-soliton solution in the general case LY # 0. 
Since this important Bicklund property is lacking, it might be more convenient to express 
the NLBq system as a single-field bilinear form. 

5. A bilinearization scheme for the NLBq System 

The motivation for wanting to bilinearize the NLBq system is threefold. Apart from the 
obvious challenge such an attempt presents for the Hirota conjecture, and apart from the great 
advantage such a bilinear form presents when discussing different aspects of integrability 
(solitons, Lax pairs, etc), the main motivation in this particular case is that one believes 
there are quite strong indications of the specific nature of such a bilinear form. First of 
all there is the fact that the NLBq system has sech-squared soliton solutions. This strongly 
points to the existence of a KdV-type bilinear representation (i.e. expressed in a single field). 

Secondly, we know that the bilinear system that generates Kaup’s equation acts as a 
bilinear Backlund transformation for the NLBq system. If one compares this bilinear system 
with other bilinear Backlund transformations found in the literature, one immediately notices 
that it has precisely the form of a Backlund transformation derived by means of Hirota’s 
exchange formalism (Hirota 1974, 1980) from a KdV-type bilinear equation. As we will see, 
a direct bilinearization based on the aforementioned arguments does not work out in any 
satisfactory way. However, it is possible to circumvent the problems that arise by tackling 
the bilinearization of more that one member of the NLBq hierarchy at a time. 

Let us first consider the NLBq system itself which, as mentioned earlier, has sech-squared 
soliton solutions 

U,?,,, = 2a;In (I + ee) = 4k2sechZ (i) 
where 0 = -kx + mt + 5 and m = + k 

This suggests that a dependent-variable transformation U = q k ,  V = qrfI might give 
rise to a ‘primary equation’ expressible as a linear combination of so-called standard 
polynomials (see, e.g., Lambert et ~l 1994) i n  the variable q ( x ,  t2 ,  t,, re, . . .). Since these 
standard polynomials can be identified with the action of D-operators on a single-field 
variable (say G) by setting q = 21nG, this would lead to a KdV-type bilinear equation 
generating the NLBq system. However, expressing the NLBq system ( I )  in terms of the 
‘primary’ variable q (integrating once with respect to x with zero boundary conditions) we 
get 

with k2 < 0. 
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It can easily be seen that equation (20) can never be expressed as a linear combination 
of standard polynomials and, hence. that it does not immediately bilinearize by setting 
q =21nG. 

Nonetheless, written in this explicitly rational form, we notice that the pEmary NLBq 
equation (20) is of overall weight 4 (again assigning weights 1 and m to the x and t,,, 
variables, respectively, and weight 2 to the parameter (U). Furthermore, inspection of the 
first equation in the system (18) (defining the t3 flow in the NLBq hierarchy) tells us that 
when expressed in terms of the q variable, the resulting total differential with respect to x 
can be integrated yielding a second weight4 primary equation: 

Not only is equation (21) of overall weight 4 but it also contains the same rational 
contribution in q as one finds in (20). This suggests there exists a unique weight-4 equation 
that is polynomial in q and its derivatives, namely 

(22) 2 4q,c, - aqzr + 94x + 3q, - 392, = 0. 

Equation (22) is readily seen to be a combination of standard polynomials and hence to be 
bilinearizable by setting q = 21n G ,  namely 

(23) 

The crucial remark to make at this point is that in the case (Y = 0 equation (22) is simply 
a scaled version of the KP equation (Kadomtsev and Petviashvili 1970). The corresponding 
bilinear form obtained from (23) can be identified with that for the KP equation found in 
Jimbo and Miwa (1983) after rescaling the independent variables (tm -+ (-i)"-' tm). 

Leaving equation (20) for what it is and moving up one step in the NLBq hierarchy, it 
is found by direct computation that both the first equation in the 4 flow obtained at m = 4 
from definitions (16) and (17) 

[4D,Dt3 - (uDI + 0,' - 3Di] G . G = 0.  

and the second equation in system (18) (defining the t3 flow for the V-field) give rise to 
weight-5 primary equations for q. again exhibiting the same type of rational contributions. 
Combining these two primary equations one finds a unique weight-5 equation that is 
polynomial in q and its derivatives, namely 

9 x 4  = {4hh + f ( W X h  - 3 4 2 4 X h  - 43r.tJ. (25) 
It is again a combination of standard polynomials in  q and hence corresponds to the 
following bilinear form (setting q = 21n G): 

(26) 
As i n  the weight-4 case, equation (25) with (U set to zero and f, --t (-i)m-' tm can be 
recognized as the weight-5 flow in the KP hierarchy; equation (26) can again be found in 
Jimbo and Miwa (1983). 

These results show clearly that the first two members of the N L B ~  hierarchy share part 
of the solution set of nonlinear evolution equations intimately related to the KP equations (or 
the KP equations themselves in the case (U = 0) and one is of course tempted to extrapolate 
this property to the entire NLBq hierarchy, i.e. appropriate linear combinations of weight 
m equations occuring in the NLBq hierarchy will be identifiable with a generalization (for 

[30,01~ - 2DrZ0r3 - (uD,D,, + D:Q2] G . G = 0. 
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(Y f 0) of the weight m KP equation. What does this 'conjecture' imply for the corresponding 
bilinear equations? 

When one constructs the bilinear representation of the KP hierarchy, either through Sat0 
theory (Ohta eta1 1988) or through a Wronskian approach (Nimmo 1989). a certain number 
of linearly independent bilinear equations are found at each weight level, although only one 
of them is actually needed as a bilinear form for the KP equation of that weight. The reason 
for this redundancy (growing with the weight) in bilinear forms is that at each weight level 
some differential consequences of lower-weight KP equations turn out to be bilinearizable 
as well. In the case of the NLBq hierarchy, there is an extra flow present compared with 
the KP case. The tz flow is of course defined by the NLBq system itself, whereas in the 
KP equation tz  is merely an independent variable. This extra flow opens the possibility of 
creating a larger number of bilinearizable differential consequences of lower-order flows at 
a given weight level than would be possible in the KP case. We will now show that such a 
'supplementary' bilinear equation gives rise to a bilinear form for the NLBq system. 

The same procedure as was used to construct bilinearizable combinations of the tz , t ,  
and f4 flows of the NLBq hierarchy can be used to construct three linearly independent 
weight-6 bilinear equations, using appropriate combinations of the flows up to 15. Two of 
these are again closely related to the KP hierarchy, namely 

[144DxDl, + 2OD:D,, -SOD: + 45 D:Di + 0," 

+ 4a2D: -5aD;  - 68aDXDf3] G .  G = 0 (27) 

+ ~ C Y ~ D ~ - ~ L Z D ~ - ~ ~ D ~ D * , ]  G . G = O  (28) 

[36DI2D,, - 3 2 0 ;  -4D:Dl,+D,6+9D:D; 

(for (Y = 0 and with t,,, -+ (-i)'"-' t, these can be found in Jimbo and Miwa (1983)). 
The third bilinear equation however turns out to be expressible in terms of the variables 

x ,  rz and t3 alone: 

[ 4 D ~ D , - ( ~ D ~ f D ~ - 3 0 ~ D ~ + l k t ( D ~ D t ,  - D : ) ]  G . G = O  (2% 
and does not correspond in any way to a bilinear form that can be found in the KP hierarchy! 
Since this extra bilinear equation only depends on the t 2  and 13 flows it should give access to 
a bilinear representation of the NLBq system; complementing equation (29) with (23) at the 
same time defines a bilinear representation for the NLBq system and for its first higher-order 
flow: 
[4D,D,3 - uD:+ 0," - 3Di] G. G = 0 
[ ~ D ~ D ~ , - ( Y D ~ + D ~ - ~ D ~ D ~ + ~ ~ ( Y ( D ~ D ~ , - D ~ ) ]  G . G = O .  
Indeed, setting q = 21n G in (30) we find 

(30) 

4s,, - ffq2r + q4x + 3qk - 3qzl2 = 0 
4(43x.t3 + 3qzrqq)  - (Y(q4x + 3&) + (46 + 15qaq4x + 1%;) (31) 

-3(qa,zl, + szrqzf, + %?,J + 1 W q m  - qa*) = 0. 
Since the first equation in (31) makes qrt, explicit, the r3-dependence in the second equation 
in (31) can be eliminated, yielding the following weight-6 equation: 

(q2r - a/2)(s2tz - 'Yq2 + q4x  +qk) - q:,2 - s:, = 0 (32) 
which is simply the numerator of the primary version (20) of the NLBq system. This equation 
can in turn be used to eliminate the q2r2 term in the first member of the system (31), yielding 
the primary version (21) of the t 3  flow of the NLBq hierarchy. 
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A direct consequence of the bilinear system (30) in the 01 = 0 case is the existence of 
so-called symmetric Wronskian solutions: 

1 'P 'pr ... '#(N-I)z I 

1 ' P ( N - l ) x  . .. ... ' 4 W - 2 ) ~  I 
with fpt2 = hi% and 'p, = -$03x. When 01 = 0, the first equation in (30) is satisfied 
since this is the KP equation for which the Wronskian solution (33) is just a particular case 
of more general Wronskian solutions (Nimmo 1989). The second equation of (30) can be 
written (using the first equation) as 

(4DxDt, + D," - 3D:) f, f X  = 0 (34) 

Because of the symmetric nature of (33) fz is again a KP-type Wronskian and hence (34) 
is trivially satisfied. 

Solutions of the type (33) were also described in the context of trilinear forms 
(Matsukidaira et a1 1990, Satsuma et a1 1992). It should be noticed however that the 
trilinear formalism is only applicable in the 01 = 0 case; interesting solition solutions such 
as p q  = c reductions of the KP solitons will be examined (Loris and Willox 1995) using the 
bilinear system (30), also in the case (Y # 0. How one can construct an applicable bilinear 
B2cklund transformation for this system will also be shown in Loris and Willox (1995). 

6. Concluding remarks 

We have thus shown that the NLBq system (1) can be bilinearized in the form (30) by 
complementing it with the first higher-order flow of its associated hierarchy. To our 
knowledge, this is the first example of a bilinear form for a soliton system where time 
variables from higher-order flows have to be used in order to bilinearize a lower member 
of a hierarchy. In all known examples exactly the opposite procedure is applied: higher- 
order members of a hierarchy are bilineaxized using extra time variables stemming from 
lower-order members of the hierarchy (Newell 1985). 

The bilinear system we have found immediately yields the exact form of the two-soliton 
solutions reported in Lambert et ai (1994); an explicit proof, however, of the existence of 
N-soliton solutions applying a Wronskian technique to this bilinear form, which tums out 
to be a p q  = c reduction of the KP hierarchy, will be reported elsewhere (Loris and Willox 

The bilinear formulation of the first four members of the NLBq hierarchy reveals an 
intimate link with the KP hierarchy. Previously a similar relationship between the classical 
Boussinesq and the modified KP-hierarchies was discussed by Sachs (1988) and in the light 
of our construction of the NLBq hierarchy, these newly discovered ties with the KP hierarchy 
do not come as a surprise. We believe, however, that a better understanding of the specific 
reduction procedure from KP to the NLBq system is necessary, especially where the respective 
solution sets (and in particular the soliton solutions) are concerned. The related works by 
Hirota (1985, 1986) for the classical Boussinesq hierarchy can be expected to shed some 
light in these matters. These problems will be the topic of a forthcoming publication. 

The proof of the hereditary nature of the recursion operator (17). together with a bi- 
Hamiltonian formulation of the NLBq system, will also be presented therein. 

1995). 
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Finally, we feel it is important to note that the canonical bilinear form for the Kaup 
hierarchy (or classical Boussinesq hierarchy) we use in our construction of this recursion 
operator could be obtained (constructively) just by two-soliton considerations. 

Acknowledgments 

Two of the authors are affiliated to the National Fund for Scientific Research (Belgium), 
RW as Senior Research Assistant and IL as Research Assistant. The authors would also 
like to thank Professor Franklin Lambert for very stimulating and revealing discussions as 
well as his encouragement to write this paper. They also wish to acknowledge the support 
of the Belgian Goverment through N A P  El. 

References 

Hietarinta J 1987 J. Marh. Phys. 28 1732 
Himta R 1974 Prog. Theor. Phys. 52 1498 
-1980 Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) p 157 
-1985 1. Phys. Soc. Japan 54 2409 
-1986 3. Phys. Soc. 3apan 55 2137 
Hirota R and Satsuma 1 1977 Prog. Theor. Phys. SI 797 
It0 M 1984 Phys. Lcrt, 1MA 248 
Jimbo M and Miwa T 1983 RIMS Kyoro Unir. 19 943 
Kadomtsev B B and PeNiashvili V I 1970 Sov. Phys.-Dokl 15 539 
Knup D 1975 Pwe. ?%or. Phys. 54 396 
Lamberf F, Loris I. Spdngael J and Wdlox R 1994 1. Phys. A: Marh Gen. 27 5325 
Liu Q M, Hu X B and Li Y 1990 J. Phys. A: M d h  Gen. 23 585 
Loris I and Willox R 1995 Soliton solutions of Wronskian form to the nonlocd Boussinesq quation J. Phys. Soc. 

Matsukidaira I, Satsuma J and Strampp W 1990 Phys. Left. 147A 467 
Newell A C 1985 Solirow in Morhemrics and Physics (Philadelphia, P A  SIAM) p 127 

3npm submitted 

N h m o  1 1989 J.  Phys. A: Math  Gen. 22 3213 
Ohm Y .  Satsuma J. Takahashi D and Tokihim 7 1988 Pmg. Theor. Phys. Suppl. 94 ?IO 
Sack A C 1988 Physica 30D 1 
Satsuma J. Kaiiwaa K. Matsukidaira J and Hietarinta 1 1992 J. Phys. Soc. Japan 61 3096 
WUox R. Lambert F and Springael J IS93 ApplicafionsofA~lyri~ ondGeomnrie Merhods o Nonlinear Differential 

Egunrionr ed P Clarkson (Dordmht: Kluwer) p 257 


